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ABSTRACT 

Distributed computing offers the poten- 
tial for improved system's performance 
for many applications. Critical to the 
realization of this performance im- 
provement is a methodology for task al- 
location which considers both the 
application requirements and the system 
architecture. This paper examines a 
conceptual framework for task allocation 
in distributed systems and discusses 
application and computing system 
parameters critical to task allocation 
decision processes. The paper addresses 
task allocation techniques which focus on 
achieving a balance in the load dis- 
tribution among the system's processors. 
That is, equalization of computing loact 
among the processing elements. Examples 
of system performance are presented for 
specific applications. Both static and 
dynamic allocation of tasks are consi- 
dered and system performance evaluated 
using different task allocation method- 
ologies. 

INTRODUCTION 

Recent advances in the development of 
microcomputer systems has irxreased 
interest in the use of distributed 
computing systems. Certain applications 
such as the Battle Management and 
Command, Control, and Communications 
(BM/C3) requirements of a' strategic 
defense system appear naturally as 
distributed computational systems.[l] In 
addition, despite the impressive speed of 
the current generation of computers, 
their architecture limits them to a 
mostly serial approach to computation, 
.and limits their usefulness for problems 
that are computational intensive and 
which may require processing speeds 
upwards of 100 million operations per 
second. Physical limits suggest that 
these traditional, serial architectures 
offer little hope of large performance 
improvements. Distributed and parallel 
processing systems offer an opportunity 

for improved system performance, 
reliability and flexibility. Critical to 
the realization of increased system 
capabilities is an effective means of 
allocating the processing tasks among the 
system's Computing resources. Without an 
effective scheme of task allocation, the 
performance of the distributed system can 
be degraded to something less than that 
of one of the system's single processors. 

This paper presents preliminary results 
of research performed to analyze the 
performance of task allocation method- 
ologies for a distributed computing 
system. For this paper, distributed 
processing is considered as a special 
case of parallel processing where the 
processing elements are loosely coupled 
and any exchange of information and 
control of the system must take place via 
an interconnection structure instead of 
by means of shared memory. However, the 
fundamental approaches used in this work 
do not preclude use with a tightly 
coupled parallel processing system. The 
appli-cation program used in this 
analysis was that of Integer Linear 
Programming (ILP). ILP is representative 
of a class of algorithms which is 
applicable to the solution of several 
problems within the BM/C3 environment of 
strategic defense. Results of this 
analysis show that dynamic task 
allocation can provide significant 
performance improvement. Also discussed 
are planned extensions to this research. 

PERFORMANCE OF DISTRIBUTED SYSTEMS 

Evaluation of alternative system 
implementation must be based a relevant 
metrics. Because increased speed of 
computation is one of the primary reasons 
for using parallel systems, the speed of 
the parallel algorithm is one of the most 
important parameters for system 
evaluation. The most frequently used 
measures of parallel and distributed 
system perforranse arp 
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speed-up and efficiency. These 
measures are defined as follows: [ 2 ]  

worst-case running time of fastest 

for the problem 
known sequential algorithm 

(1) s =  

worst-case running time of 
parallel algorithm 

worst-case running time of fastest 

for the problem 
known sequential algorithm 

E =  
,-\ 
( L J  

cost of parallel algorithm where, 

S - Speed-up 
E = Efficiency 

and the cost of parallel algorithm is 
defined to equal the product of the 
parallel running time and the number of 
processors used. 

The ratio of single processor time to 
parallel system time can be expressed 
as S = T1/TN where T1 is the 

single processor time and the computa- 
tion time using N processors, T , is 
determined by the following formupa: 

TN = TS + Max (Tc) + TW ( 3 )  

where 
TN Computation Time for N 

TS = Start-up Time 

Max (Tc) - Time required for 
processors 

last busy processor 
to complete its 
computation 

TW = Wind-Down Time. 

Start-up time measures the time that is 
required to initialize the system 
before any computations can begin. 
Wind-Down time refers to the time 
required to collect from the various 
system processors and analyzing or 
tabulating into a final product. The 
time required for the last busy 
processor to complete its computations 
includes several elements. Included is 
all of the time during which this 
wrocessor and all other processors in 

Maximum speed-up, which is the 
overriding objective for most parallel 
processing applications, occurs when 
the parallel processing time is 
minimized. The elements of the equa- 
tion for the parallel processor time 
are not independent. The algorithm, 
the architecture and their implemen- 
tations determine the specifics of the 
relationships among these parameters. 
However for applications of interest 
the predominant factor, by orders of 
magnitude, is the computation time. 
Thus, speed-up is maximized when 
Max(Tc) is minimized. 

Balanced Computational Load 

There are three rules of thumb for 
minimization of Max(T ) and, therefore, 
maximizing the perfoAance of parallel 
processing systems: [ 3 ]  

(1) Distribute the computation load 
evenly: 

( 2 )  Maximize the computation time to 
communication time ratio: 

( 3 )  Minimize communication distance. 

These rules of thumb, unfortunately, 
may conflict. For example, in order to 
maintain a balanced computational load 
additional communications overhead may 
be required. Thus Max(T ) ,  which 
includes both computation an8 required 
interprocessor communications, must be 

Just considered in its entirety. 
maintaining a balanced workload with 
out consideration of associated 
overhead and memory system costs may 
result in decreased system performance. 
This is the task allocation issue being 
addressed in this research. 

TASK ALIBCATION 

Concepts and techniques for task 
allocation or task scheduling have 
evolved from the considerable body of 
work on job-shop or assembly-line 
problems. [ 4 , 5 ]  Work in this area has 
been has been extensively documented in 
management science, operations re- 
search, and computer science and 
engineering literature. The two funda- 
mental approaches to task allocation 
are static and dynamic. Each of these 
techniques has advantages and dis- 
advantages which are a function of the 
application and the system archi- 
tecture. [6] 

the system were actually performing 
useful computations. Also included is Static Allocation 
any idle time, time required to 
communicate with other processors, and Static allocation involves the a-priori 
time required to perform overhead determination of the allocation of 
functions built into the parallel tasks. This method is the least 

complex and requires the least overhead algorithm. 
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of the system 'during its operation. In 
systems where complete knowledge of the 
computational requirements of t h e  
application tasks and the system's 
operational characteristics are knowr,, 
static allocation of task can be the 
most efficient. Minimal resources are 
required during run-time while 
maintaining high levels of efficiency. 
But, solution of the static allocation 
problem in these cases generally 
requires solution by means of an off- 
line integer programming problem or 
other computational intensive combina- 
torial algorithm. Furthermore, when 
knowledge of the system operational 
characteristic while dedicated to a 
specific application, or if the exact 
computational requirements are not 
known, static allocation is not 
generally effective. In these cases, 
all advantages of parallelism in the 
problem structure and architecture may 
be lost and the total computational 
load assigned to a small subset of the 
available processors. 

Dynamic Allocation 

Dynamic allocation of tasks is an 
attempt at maintaining the most 
efficient use of the system's 
computational resources by adapting, at 
run-time, the load distribution to the 
demands of the computational tasks. It 
involves assessing the availability of 
each processing element to accept 
additional work and reallocation of the 
total system computational load so that 
a stated performance metric is 
optimized. The process of obtaining an 
optimal result is itself a large-scale 
combinatorial optimization problem, and 
therefore dynamic allocation techniques 
are most often based on heuristic 
procedures. Moreover, the difficulty 
of the task is increased by lack of 
precise information about the 
application program's requirements and 
the computational characteristics of 
the system. These factors must, in 
general, be estimated using some method 
of heuristic or statistical technique. 
The objective of any technique of 
dynamic allocation is to optimize the 
use of the system communications, 
computation, and memory resources, but 
this requires minimization of overhead 
for execution of the allocation 
routine, which requires specific 
knowledge of the distributed system 
architecture. 

DISTRIBUTED SYSTEM ARCHITECPURE 

Evaluation of the system's performance 
require consideration of both communi- 
cations and computational dependent 
parameters specific to the system 

implementation. The performance of any 
dynamic task allocation method depends 
upon not only the application, but 
these charact.eristics of the computing 
system's architecture. 

The distributed architecture system 
used for this study was the Intel iPSC 
system.[3] This system is based on a 
hypercube topology where each node of 
the topology is a processor with its 
own memory and communications 
capability. The system operation is 
based on a process model of computation 

of 2 processors each with direct 
communications with its n neighbors. 
The number n defines the dimension of 
the cube. Figure 1 illustrates a cube 
of dimension 4 .  

hyperpbe supported or by binary message n-cube passing. is a network A 

Figure 1 Dimension Four Hypercube.[3] 

The iPSC can be configured with modules 
of 16, 32, 64 or 128 interconnected 
nodes. The processors which form the 
elements of the hypercube are called 
nodes. Each node is numbered by aR n- 
bit binary number between 0 and 2 -1. 
Node 0 is connected to a separate 
processor called the "cube manager" 
which provides the input and output 
link between the nodal processors and 
the outside world. 

Communications within the cube is based 
on a static routing algorithm which 
routes .messages by a minimum number of 
hops along the edges of the cube. 
Although there is support for 
communications processing on each node, 
the nodal processor, an Intel 80286 
chip, must perform some of the tasks 
associated with forwarding a message. 
Hence the pattern of communications 
within the application's implementation 
may have a significant impact on the 
overall performance. 
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The iPSC system provides support for 
software developed in 80286 assembly 
language, C, and Fortran 77. The 
algorithms developed for this paper 
were implemented in Fortran 77. This 
language was chosen because compiled 
Fortran 77 is faster than C on the 
iPSC. 

INTEGER LINEAR PROGRAMMING 

The specific problem analyzed in this 
research is a distributed computer 
algorithm for the solution of Integer 
Linear Programming problems. In matrix 
representation, Integer Linear Program- 
ming (ILP), is an optimization problem 
which consists of finding a vector x 
which maximizes (minimizes) a linear 
objective function C*z subject to a set 
of linear constraints fi*z = E, 5 2 0, 
and 2 integer. A is an m by n matrix, 
- C is a 1 by n row vector, and and z 
are n by 1 column vectors all of which 
are integer.[7] Such problems are 
frequently posed as problems with 
inequality constraints which must be 
transformed to the required format by 
adding s 1 ac kat and alsurplusla 
variables.[7] Although the problem is 
easily expressed it is extremely 
difficult to solve in practice. It has 
been shown, in fact, that ILP is NP- 
complete.[8] 

Among the techniques frequently used to 
solve the ILP is an enumerative 
technique called the branch-and- 
bound. [5] A naive approach to 
enumerative solution of an ILP involves 
the explicit examination of each 
possible integer vector to determine 
the one which results in maximization 
(minimization) of the objective 
function. However, even for relatively 
small ILP'S the number of 
possibilities, while finite, becomes 
excessively large. Consider for 
example an ILP with ten unknown 
variables each of which has an integer 
range of zero to ten. There are more 
than ten billion possible solutions to 
this problem. Explicit enumeration of 
the possible solutions quickly becomes 
overwhelming. 

The branch and bound method of solution 
of the ILP uses a combination of 
explicit and implicit enumeration to 
reduce the total number of permutations 
which must be examined. The branch and 
bound technique can best be described 
in terms of a search tree. The heisht 
of the tree is determined by the number 
of integer variables, n, in the ILP. A 
path from the root node to a leaf node 
which satisfies all problem constraints 
corresponds to a feasible integer 
solution. At a given level of the tree 
the nodes correspond to specific 

integer values for one of the problem 
variables. Figure 2 illustrates a 
search tree for a three variable ILP 
where the x has a domain of (0,1,2) 
and x2 and k, each have a domain of 
( 0 1 1 ) .  

Initially the ILP algorithm performs an 
unconstrained solution to the linear 
programming problem which results if no 
integer constraints are applied. If no 
feasible solution exists to the 
unconstrained problem, then no solution 
exists for the ILP. The value of the 
objective function for the feasible 
solution to the unconstrained problem 
represents an upper (lower) bound on 
the ILP objective function for the 
maximization (minimization) problem. 

The hranch and bound algorithm used in 
this research performs a depth first 
search of the enumeration tree 
succes:;ively constraining the integer 
variables to specific values. As each 
variable is constrained, the value of 
the objective function for the feasible 
partial solution is compared with the 
existing lower (upper) bound to 
determirir- if further search along that 
path is justified. The lower (upper) 
bound is determined by the maximum 
(minimum) objective function value for 
feasible integer solution to the ILP. 
As a new larger (smaller) bound is 
determined it replaces the existing 
lower (upper) bound. The bound defined 
by the feasible integer solutions 
determines the criteria for eliminating 
nodes from the search tree before 
extending them. Any partial solution 
which falls below (above) the feasible 
solution bound cannot represent an 
improved solution to the maximization 
(minimization) problem. 

Distributed Computation of ILP 
The ILP was implemented on the Intel 
iPSC distributed computing system in 
the following fashion: 

1. One node of the hypercube is 
designated the responsibility of 
coordinating the computation of the 
other processors in the system. This 
controller node partitions the problem 
space, assigns blocks of the partition 
to independent processing elements, 
collects intermediate results and 
shares these results with the other 
processors, and maintains the status of 
the progress of the solution. 

2. The laworkerla nodes of the 
system perform the ILP algorithm on 
assigned blocks of the problem space 
partition. These nodes inform the 
controller node of improved results, 
current status in solving the assigned 
partition, and if they are idle. 
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x =o x =1 x =o x3=1 x3=o x =1 x =o x =1 3 3 3 3 3 3 
x =o x =1 x =o x =1 3 3 3 3 

Figure 2 Example Enumeration (Search) Tree 

Computation performed by the worker 
nodes includes the branch-and-bound 
algorithm. These nodes send to the 
controller node the objective function 
value for each improved integer 
feasible solution. This information is 
shared with all other nodes so that 
more rapid implicit enumeration is 
possible. These nodes also provide the 
the controller node with a status 
vector which represents their progress 
in solving assigned subproblems of the 
ILP problem. 
RESULTS AND ANALYSIS 

This section presents the results of 
experiments performed using the Intel 
iPsc to compute the ILP for a group of 
problems which range in complexity from 
easy to moderately difficult. Table I 
contains the descriptions of these 
problems. All of these problems are 
stated in the form of &*z 5 e .  The 
performance of these ILP problems using 
differing configurations of the iPSC 
and differing methods of task alloca- 
tion are discussed in the following 
sections. 

Baseline Performance 

A baseline of system performance for 
the four problems is presented in Table 
11. The processor time required to 
perform a sequential version of the ILP 
computation using a VAX 11/785 and a 
single node of the iPSC are compared. 
The ratio of the VAX time to the node 
processing time is seen to remain 
relatively constant at approximately 
3.285. As can be seen for Problem 4 ,  

the time required on either system is 
excessive for most environments. These 
results are based on the depth first 
search of the enumeration tree and are 
dependent upon the speed with which the 
lower bound converges to the optimal 
solution. The longer it takes to 
converge the larger the problem space 
which must be explicitly evaluated. 

Table I11 presents the "best case" 
times for these problems using a single 
node of the iPSC. These results were 
obtained by setting the lower bound to 
the previously determined optimal value 
and allowing the search algorithm to 
perform maximal implicit enumeration. 
The results show a substantial speed-up 
for all but Problem 2 .  Problem 2 does 
not show the same improvement because 
its optimal solution is encountered 
early in a depth-first search. Hence, 
implicit enumeration quickly dominates 
the enumeration scheme even for the 
sequential implementation. 
The results obtained by this method are 
not representative of normal perfor- 

They depend upon a-priori mance . 
knowledge of the answer. These results 
are included so that the parallel 
system performance can be compared with 
the best possible sequential 
performance for the specific algorithm 
used. 

Static Partition and Allocation 

Except for those applications where 
knowledge of the problem space is 
complete enough for static partition 
and allocation to provide sufficient 
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Table I 

Integer Linear Programming Problems Used for System Evaluation 

Problem 1 Problem 2 [7:370] 

5 
Objective Function = 4x + 8x2 Objective Function = x3 + x4 + x 

+ 3,- 
3 

Variables Vari ab1 es 
xl x2 x3 
1 2 3 
1 4 1 
2 

b Xl x2 x3 x4 x5 b 
18 2 3 1 2 2 18 
6 3 2 2 1 2 15 

6 4 15 -6 0 1 0 0 0 
0 -7 0 1 0 0 

Problem 3 [7:371] 

12 Objective Function = x7 + x8 i- x9 + x + x + x 10 11 

xl x2 
9 7  
12 6 
15 5 
18 4 

-12 0 
0 -15 
0 0  
0 0  
0 0 
0 0 

x3 x4 
16 8 
6 2  
12 4 
4 18 
0 0  
0 0  

-12 0 
0 -10 
0 0 
0 0 

Variables 
x5 x6 x7 x8 
24 5 3 7 
20 8 4 6 
4 5 5 5  

28 1 6 4  
0 0 1 0  
0 0  0 1  
0 0 0 0  
0 0 0  0 

-11 0 0 0 
0 -11 0 0 

x9 - 
8 
3 
6 
2 
0 
0 
1 
0 
0 
0 

x10 xll 
4 6 
1 5 
2 1 
9 7 
0 0 
0 0 
0 0 
1 0 
0 1 
0 0 

x12 b 
5 110 
8 95 
5 80 
1 100 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 

Problem 4 [9:236] 

Objective Function = -lox1 + 7x2 - x + 12x4 - 2x5 - 8x6 
i- 3x7 + x8'- 5x9 - 3 x 1 ~  

Variables 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 b 
-3 -12 8 1  0 0 0 0  8 -2 8 
0 1 10 0 5 

-5 -3 1 0  0 
5 3 - 1 0  0 
0 0 4 -2 0 
0 9  0 -12 7 
8 5 -2 -7 1 

performance, static techniques tend to 
be unsuccessful. System performance 
using static partition and allocation 
of the ILP problem space depends on the 
application program size and the 
created subproblem (blocks of the 
partition) granularity. 

The static algorithm partitions the 
problem space into one or more 
subproblems per processor. The sub- 
problems are allocated first-in-first- 
out (FIFO) to any idle processor until 
the subproblems created in the original 
partition are depleted. Once the list 
is empty, processors remain idle after 
completing their assigned subproblems. 
Insufficient numbers of subproblems 
quickly results in system speed which 
approaches that of a single processor. 
The larger the problem space the more 
likely static techniques will not 
substantially improve performance. 

-1 7 I 0 0 13 
0 0 -2 0 -1 -6 
0 0 2  0 1 6 
5 1 -9 2 0 8 

-6 0 2 15 3 12 
0 -5 0 10 0 16 

This occurs because prevention of 
single processor degeneration requires 
very large numbers of subproblems which 
in turn results in high communications 
to computation ratios. 

For example, even when the solution of 
Problem 4 is tuned by providing the 
optimal solution the overall solution 
time (with 31 nodes and 2000 sub- 
problems per node) is only 15 percent 
better than the single processor 
performance, and the computational load 
is distributed such that one processor 
is always busy while the other 30 
processors are busy only 4.6 percent of 
the time. 

Table IV shows the results of static 
partition and allocation for varying 
problems with the numbers o f  sub- 
problems fixed at 250 per node. Table 
V illustrates the performance of static 
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methods using a range of pa'.tition 
sizes on one of the problem sets. 
Clearly general techniques must involve 
methods other than static allocation. 

Dynamic Allocation Procedures 

The dynamic allocation procedures 
implemented in the algorithms used in 
this research incorporate several 
heuristic techniques. Maximum 
parallelism of the computation results 
if all processors initial idle time is 
minimized. Toward this end, the 
initial static partition and allocation 
is performed as specified for the 
static algorithm. Once the initial set 
of subproblems is depleted, any 
processor that becomes idle notifies 
the control node of its status. The 
control node is responsible for finding 
additional work, if it exists, and 
interrupting a busy processor so that 
the remaining work can be partitioned 
and reallocated. It is the procedures 
used to determine which processor to 
interrupt and how to partition that 
processor's work load that incorporate 
heuristics. 

The decision as to which processor to 
interrupt is based on which processor 
has been busy for the longest time. It 
is assumed that this processor has not 
been able to perform implicit 
enumerations on most of its subproblem, 
and therefore, contains many feasible 
integer solutions. Once the processor 
is interrupted, the number .of 
subproblems to form must be decided. 
To form only one subproblem is counter 
productive. The time lost to overhead 
of interrupt and partition will be 
repeated each time a processor becomes 
idle. Instead, the partition creates 
many subproblems which are used to 
create a F I F O  problem queue, as is done 
for the initial partition, therefore no 
other processors are interrupted until 
the queue is empty. The number of 
subproblems to create for each 
interrupt is bounded below by a user 
specified minimum and calculated using 
a multiplicative factor determined by 
the partial solution object function 
value and the current maximum feasible 
object function. The closer to the 
maximum the more subproblems created. 
Finally, as the solution 'is approached 
the possibility exists for thrashing to 
occur. To prevent repeated interrupts 
of processors, a minimum busy time can 
be specified by the user. 

Performance of Dynamic Task Allocation 

The results of experiments using the 
dynamic task allocation method 
described above are presented in Tables 
VI and VI1 and Figures 3 and 4 .  

The results shown in Table VI 
illustrate the performance of the 
dynamic partition and task allocation 
algorithm on the four test problems. 
The results cited are the best measured 
performance for each problem as 
determined by the algorithm parameters 
of number of initial blocks in the 
partition, minimum number of blocks in 
each partition of an interrupted 
subproblem, and the minimum busy time. 
There is a clear performance improve- 
ment over the static allocation results 
shown in Table IV. Moreover , the 
performance improvement increases as 
the problem complexity increases. 

As shown in Table VI, the speed-up for 
Problem Four exceeds linear, with 
respect to the number of processors, 
when compared to the single processor 
time without a-priori knowledge of the 
solution. With a-priori knowledge of 
the solution, the speed-up is less than 
linear but substantial. Further 
analysis of the the super-linear 
performance is in order. 
Based on the serial processing 
algorithm implemented in this study, 
super-linear speed-up is achievable. 
However, could the performance of this 
algorithm be improved so that it 
approaches the performance measured 
with a-priori knowledge as shown in the 
"best case" performance? If such an 
optimal algorithm can be determined, 
then it should be applied. 
Improvements may come from different 
search techniques or improved 
implementation techniques; however, it 
is questionable if such an algorithm 
can be developed for the general case. 

The advantage of the parallel solution 
of the ILP using a branch and bound 
algorithm is that the knowledge 
essential to rapid solution of the 
problem, the bounds, are determined 
more quickly. These results are 
broadcast to all computing elements, 
thereby accelerating their performance. 
If a sequential algorithm can be 
optimized, then each of the nodes could 
also use the algorithm. The 
performance improvement using multiple 
processors would approach linear, and 
differ only by the overhead associated 
with communications, start-up, and 
wind-down. 

Table VI1 illustrates the performance 
of the dynamic scheduling algorithm 
applied to Problem Four for varying 
numbers of nodes. The speed of 
performance improves approximately 
linearly with the number of processors. 
These results were based on the same 
number of blocks in the initial 
partitions, the same number of blocks 
in the subsequent partition of 
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subproblems, and the same minimum busy 
time . 
Figures 3 and 4 illustrate the 
criticality of the dynamic task 
allocation parameters. There exists a 
clear indication that specific values 
provide s2gnif icant performance 
improvements. Moreover, certain values 
for the parameters result in B 
significant degradation in the 
perf ormance. How the lloptimalll 
parameters are determined is the 
subject of on-going research. 

SIJMWiRY 

The results illustrate that reasonable 
Performance from a distributed 
computing system requires some method 
of dynamic task allocation. Such an 
allocation scheme must consider not 
only the application but the 
characteristic of the system architec- 
ture used for the implementation. 
Specifically the processing speed, the 
communication subsystem characteris- 
tics, and the memory requirements. 

The results of pervious experiments 
demonstrates the need for an adaptive 
algorithm to "tune1' the application 
algorithm's performance to the system 
architecture. On-going research is 
examining the development of automated 
techniques for generating the critical 
task allocation parameters. Under 
consideration are methods of stochastic 
estimation and heuristics for 
determining the best combination of 
allocation algorithm parameters. In 
addition, further work is being 
performed to improve the serial 
algorithm by consideration of different 
searck strategies. 

TABLE I1 

Serial Processing Time 
( in Seconds) 

PROBLEM INTEL VAX 11/785 

(1 NODE) 
NUllBER iPSC 

1 11.1 3.6 
2 49.8 14.8 
3 4067.3 1193.6 
4 108335.9 32052.0 

TABLE I11 

"Best Cane" Serial Processing Time 

Problem INTEL 
nurber ipsc 

1 0.795 
2 49.685 
3 750.295 
4 3222.355 

(in Seconds) 

(1 Node) 

Table IV 

Static Partition and Allocation 
(31 Nodes) 

Problem Solution Speed 
Number Time UP 

(Seconds) 

1 4.12 2.69 
2 45.81 1.09 
3 1689.31 2.41 
4 108289.00 1.00 

Table V 

Problem 3 
Static Partition and Allocation 

(31 Nodes) 

Number 
Blocks 
Per Node 

100 
200 
500 
600 
800 
1000 
1500 
2000 

Solution 
Time 
(Seconds) 

1691.6 
1699.5 
1664.3 
1736.0 
1736.1 
1691.7 
1691.6 
1689.5 

Speed 
UP 

2.4 
2.4 
2.5 
2.3 
2.3 
2.4 
2.4 
2.4 

Table VI 

Dynamic Partition and Allocation 
(31 Nodes) 

Prob . Solution 
# Time T1/TN "Best Tln/TN 

(See.) 
1 3.22 3.45 0.24 
2 13.86 3.59 3.58 
3 488.23 8.33 1.57 
4 155.09 €98.54 20.78 

Table VI1 

Problem 4 
Dynamic Partition and Allocation 

Nodes Time T1/TN "Best Tlw/TN 
Solution 

(Sec.) 
4 1233.9 87.8 2.61 
8 664.7 163.0 4.85 
16 373.7 289.9 8.62 
31 155.0 698.94 20.78 
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